Zabor-33.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол откоса призма обрушения

Призма обрушения грунта. Безопасность основных строительно-монтажных работ

При решении практических задач из общего напряженного состояния массива грунта обычно выделяют в отдельную задачу определение усилий, передающихся грунтом на вертикальные или наклонные грани сооружения. Типичными конструкциями, для которых существенно важна оценка давления грунта Е, являются различного рода подпорные стены (рис. 6.1, а), стены подвальных помещений (рис. 6.1, б), устои мостов (рис. 6.1, в), гидротехнические сооружения (рис. 6.1, г), ограждения котлованов, перемычки и др.

Рис. 6.1. Давление грунта на различные сооружения.

1 — область («призма») обрушения грунта;

2 — область («призма») выпора грунта.

Как убедительно показали эксперименты и натурные наблюдения, давление грунта Е на сооружение существенно зависит от направления, величины и характера смещений вертикальных или наклонных контактных граней сооружения, по которым происходит взаимодействие с грунтовым массивом.

Рассмотрим влияние смещений на примере простейшей подпорной стены (рис. 6.2). В случае уверенно неподвижной стены (рис. 6.2, в) деформации грунта происходят без бокового расширения и поэтому при действии только собственного веса грунта можно принять σ x = ξσ z = ξγ гр z, где ξ — коэффициент бокового давления грунта (см. раздел 3.3, ф-ла 3.23). При этом суммарное боковое давление на единицу длины стены (в направлении, перпендикулярном плоскости хz) определится как E 0 = ξγ гр h 2 /2. Давление E 0 принято называть давлением покоя , поскольку величина коэффициента ξ в E 0 отвечает случаю отсутствия боковых смещений грунта.

Рис. 6.2. Зависимость давления грунта от величины и направления

горизонтального смещения стенки или сооружения.

Под действием давления грунта могут возникать смещения U сооружения в сторону от грунта засыпки (на рис. 6.2 приняты со знаком минус, т.е. U Шубин М. А. Подготовительные работы при сооружении земляного полотна железной дороги. — М .: Транспорт, 1974.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб. , 1890-1907.

Отрывок, характеризующий Призма обрушения

Если откос массива грунта имеет крутизну больше предельной, то произойдет обрушение грунта. Удержать массив в равновесии можно при помощи подпорной стенки. Подпорные стенки широко применяются в различных областях строительства. На рис. 5.9 показаны некоторые случаи применения подпорных стенок.

Давление грунта, передаваемое призмой обрушения на грань стенки, носит название активного давления Е а . При этом подпорная стенка смещается в сторону от засыпки. Если же подпорная стенка смещается в сторону грунта, то грунт засыпки будет выпирать вверх. Стенка будет преодолевать вес грунта призмы выпирания, что потребует значительно большего усилия. Это соответствует пассивному давлению (отпору) грунта Е р .

Поскольку в пределах призмы обрушения возникает предельное равновесие, задача по определению давления грунта на подпорную стенку решается методами теории предельного равновесия со следующими допущениями: поверхность скольжения плоская, а призма обрушения соответствует максимальному давлению грунта на подпорную стенку. Эти допущения адекватны только для определения активного давления.

5.5.1. Аналитический метод определения давления грунта

на подпорную стенку

Рассмотрим условие предельного равновесия элементарной приз-

мы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .

Из условия предельного равновесия на глубине z

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z , т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н , давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

Читайте так же:
Как начать делать откосы

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

5.5.2. Давление грунтов на подземные трубопроводы

Давление грунта на трубопровод определяют на основе общей теории предельного напряженного состояния. Вертикальное давление в грунтовом массиве, ограниченном горизонтальной поверхностью, на глубине z (рис. 5.12, а ) с удельным весом грунта определяют по формуле

Боковое давление грунта на той же глубине

где – коэффициент бокового давления грунта в условиях естественного залегания, равный .

Если в зоне, контуром которой является трубопровод, грунт в точности заменить самим трубопроводом (рис. 5.12, б ), то естественно, что этот трубопровод будет испытывать давление, которое определяется зависимостями (5.26) и (5.27).

Давление на трубопровод передается сверху и с боков и вызывает равную и противоположно направленную реакцию основания: оно принимается в виде среднего равномерно распределенного давления – вертикального интенсивностью р и горизонтального интенсивностью q , причем имеет место соотношение р > q . Следует различать три принципиально различных способа прокладки трубопроводов: в траншее (рис. 5.13, а ), с помощью закрытой проходки (прокола) (рис. 5.13, б ) и под насыпью (рис. 5.13, в ).

При одинаковой глубине заложения Н трубопроводов давление р будет различным: при траншейной укладке р и при проколе, если Н сравнительно мало, р = , при больших значениях Нр Фундамент дома

ОПРЕДЕЛЕНИЕ КРУТИЗНЫ ОТКОСОВ ВРЕМЕННЫХ ВЫЕМОК

В ОДНОРОДНЫХ НЕМЕРЗЛЫХ ГРУНТАХ

В.1. Для определения крутизны откоса принимаем буквенные обозначения величин:

h — высота откоса, м;

— крутизна (угол) откоса, град;

c и — предельные значения удельного сцепления, кПа, и угла внутреннего трения, град, определяемые по формулам:

; , (В.1)

где и — расчетные значения соответственно удельного сцепления, кПа, и угла внутреннего трения, град, определенные согласно требованиям СП 22.13330;

— коэффициент устойчивости, определяемый по формуле

, (В.2)

здесь и — соответственно коэффициенты надежности по назначению и условий работы, принимаемые в соответствии с СП 22.13330; для земляных сооружений высотой (глубиной) до 10 м со сроком службы до 5 лет допускается принимать значение коэффициента надежности по назначению ;

— расчетное значение удельного веса грунта, кН/м3, определяемого в соответствии с требованиями СП 22.13330. Удельный вес, кН/м3, вычисляется путем умножения плотности, т/м3, на величину ускорения свободного падения 9,8 м/с2.

В.2. Находим число единиц загружения K в заданной нагрузке q, кПа, на поверхности грунтового массива по формуле

. (В.3)

При отсутствии нагрузки на поверхности или ее расположении от бровки выемки на расстояниях, больше установленных в В.5 настоящего приложения, принимается K = 0.

В.3. Определяем параметр устойчивости по формуле

. (В.4)

В.4. Требуемый угол откоса находим по значениям , K и E следующим образом:

при по графикам на рисунках 1 — 5 с интерполяцией для промежуточных значений и E;

Читайте так же:
Болезни как откос от армии

при E > 0,25 по формуле

, (В.5)

где — предельное значение (обозначено на верхнем обрезе координатной сетки на рисунках В.1 — В.5);

— значение , соответствующее E = 0,25.

В.5. Для временных откосов (со сроком службы до одного года) минимальное приближение к бровке , м, нагрузки, которую допускается не учитывать (K = 0) при нахождении значения , допускается определять в зависимости от ширины призмы обрушения откоса b, м:

а) при нагрузке от сыпучего материала с удельным весом (например, от отвала грунта), отсыпанного под углом естественного откоса, но не более 45° от горизонтали

; (В.6)

б) при равномерно распределенной нагрузке

, (В.7)

где — 18 кН/м3.

Ширину призмы обрушения откоса b, м, определяем по формулам:

при

; (В.8)

при

; (В.9)

Основные характеристики уплотненных грунтов ( , , и коэффициенты A и B, и ) должны определяться для разновидностей уплотняемых грунтов тяжелыми трамбовками, в том числе при вытрамбовывании котлованов, укаткой и вибрационными машинами при устройстве грунтовых подушек; грунтовыми сваями; глубинным виброуплотнением.

Г.3. Опытное уплотнение грунтов естественного залегания следует производить в зависимости от геологического строения грунтов на стройплощадке по указаниям проекта:

при однородном напластовании грунта — в одном месте;

при однородном напластовании грунта, но при значительном изменении влажности — в двух местах;

при разнородном напластовании грунтов — в двух-трех местах.

Г.4. Размеры участка для опытного уплотнения должны быть не менее трех диаметров трамбовки или двойной ширины рабочего органа трамбующей машины при уплотнении трамбованием, не менее 6 x 12 м при уплотнении укаткой и 10 x 10 м при виброуплотнении.

Опытные котлованы следует вытрамбовывать из расчета по одному котловану на каждый: типоразмер используемой трамбовки; вид фундамента (без уширения, с уширенным основанием, спаренные и др.).

Г.5. При глубинном уплотнении просадочных грунтов грунтовыми сваями опытный участок уплотняется тремя смежными сваями, расположенными в плане в вершинах равностороннего треугольника на расстоянии согласно проекту.

Г.6. Опытное уплотнение просадочных грунтов предварительным замачиванием, в том числе с применением глубинных взрывов, осуществляется в опытном котловане глубиной 0,4 — 0,8 м, шириной, равной толщине слоя просадочного грунта, но не менее 20 м.

Г.7. При уплотнении грунтов трамбовками через каждые два удара трамбовки (прохода трамбующей машины) по забитым в грунт штырям нивелированием определяется понижение уплотняемой поверхности. Для контрольного определения толщины уплотненного слоя в центре уплотненной площади на глубину, равную двум диаметрам трамбовки (через 0,25 м по глубине), следует определять плотность и влажность грунта.

Г.8. Опытное вытрамбовывание котлованов грунтов следует производить с замером понижения дна котлована после каждых двух ударов трамбовки. Нивелирование надлежит выполнять по верху трамбовки в двух диаметрально противоположных точках. Для контрольного определения размеров уплотненной зоны в центре котлована отрывается шурф на глубину, равную двум диаметрам или двойной ширине основания трамбовки с отбором проб грунта через каждые 0,25 м. На каждом горизонте пробы берутся в центре и со смещением на 0,25 м в сторону на расстоянии от края котлована, равном удвоенному размеру среднего сечения трамбовки. По отобранным образцам определяются плотность и влажность грунтов.

Г.9. При опытном вытрамбовывании котлованов с уширением основания фиксируется объем каждой порции и общего количества втрамбовываемого материала (щебня, гравия и т.п.) и размеры в плане глубины полученного уширения.

Г.10. При устройстве грунтовых подушек опытное уплотнение производится при трех вариантах: числе проходов катка 6, 8 и 10 или ударов трамбовки (проходов трамбующей машины) по одному следу — 8, 10 и 12. Уплотнение производится для всех разновидностей применяемых грунтов не менее чем при трех значениях их влажности, равных ; и ( — влажность на границе раскатывания).

Читайте так же:
Как отделать откос входной двери пластиком

Г.11. После уплотнения грунта на опытном участке надлежит определить плотность и влажность уплотненного грунта на двух горизонтах, соответствующих верхней и нижней части уплотненного слоя.

Г.12. Определение плотности сухого грунта следует производить методом режущих колец по ГОСТ 5180. Допускается производить контроль плотности экспресс-методами (зондированием по ГОСТ 19912, радиоизотопным по ГОСТ 23061 и др.). При использовании экспресс-методов 5% общего числа измерений следует выполнять методом режущих колец.

Г.13. Для установления результатов опытного глубинного уплотнения грунтовыми сваями на строительной площадке, выполненного по Г.5 настоящего приложения, следует отрывать контрольный шурф на глубину не менее 0,7 просадочной толщи или глубины уплотнения с определением влажности и плотности грунта через каждые 0,5 м на глубину 3 м, а ниже — через каждый метр. На каждом горизонте определяется плотность сухого грунта в двух точках в пределах каждой грунтовой сваи и в межсвайном пространстве.

Г.14. Для наблюдения за просадкой уплотняемого грунта в процессе опытного замачивания, в том числе глубинными взрывами, следует установить на дне котлована и за его пределами по двум взаимно-перпендикулярным сторонам котлована поверхностные марки через 3 м на расстоянии, равном полуторной толщине слоя просадочного грунта, а в центре котлована — куст глубинных марок в пределах всей просадочной толщи через 3 м по глубине.

При выполнении опытного замачивания с применением энергии глубинных взрывов ВВ дополнительно следует осуществлять инструментальные замеры в целях уточнения радиуса зоны разрушения структуры грунта от одиночного заряда и равномерности просадки массива при взрыве смежных зарядов.

Г.15. Опытное виброуплотнение водонасыщенных песчаных грунтов следует производить в пределах площадки, имеющей наиболее характерный гранулометрический состав грунта, без «рыхления» — в семи точках, с «рыхлением» — в шести. Оценка гидровиброуплотнения производится по показателю плотности сухого грунта или коэффициента уплотнения косвенными либо прямыми методами по Г.12.

ПРИЛОЖЕНИЕ 3
Рекомендуемое

1. Для определения крутизны откоса принимаем буквенные обозначения величин:

h — высота откоса, м ;

q — крутизна (угол) откоса, град;

с и j — предельные значения удельного сцепления, кПа, и угла внутреннего трения, град, определяемые по формулам:

(1)

где c I и j I — расчетные значения соответственно удельного сцепления, кПа, и угла внутреннего трения, град, определенные согласно требованиям СНиП 2.02.01-83;

kst — коэффициент устойчивость, определяемый по формуле

(2)

здесь g n и g c — соответственно коэффициенты надежности по назначению и условий работы, принимаемые в соответствии со СНиП 2.02.01-83; для земляных сооружений высотой (глубиной) до 10 м со сроком службы до 5 лет допускается принимать значение коэффициента надежности по назначению g n = 1,05;

g I — расчетное значение удельного веса грунта, кН/м 3 , определяемого в соответствии с требованиями СНиП 2.02.01-83. Удельный вес, кН/м 3 , вычисляется путем умножения плотности, т/м 3 , на величину ускорения силы тяжести, 9,8 м/с 2 .

2. Находим число единиц загружения K в заданной нагрузке q , кПа, на поверхности грунтового массива по формуле

(3)

При отсутствии нагрузки на поверхности или ее расположении от бровки выемки на расстояниях, больше установленных в п. 5 , принимается К = 0.

3. Определяем параметр устойчивости по формуле

4. Требуемый угол откоса q находим по значениям j , К и Е следующим образом:

при Е £ 0,25 по графикам на черт . 1-5 с интерполяцией для промежуточных значений j и Е;

при Е > 0,25 по формуле

где q — предельное значение q (обозначено на верхнем обрезе координатной сетки на черт. 1-5 );

q 0,25 — значение q , соответствующее Е = 0,25.

5. Для временных откосов (со сроком службы до одного года) минимальное приближение к бровке bf , м, нагрузки, которую допускается не учитывать ( К = 0) при нахождении значения q , допускается определять в зависимости от ширины призмы обрушения откоса b , м:

Читайте так же:
Показать как делать откосы

а) при нагрузке от сыпучего материала с удельным весом g m £ 18 кН/м 3 (например, от отвала грунта), отсыпанного под углом естественного откоса, но не более 45 от горизонтали

(6)

б) при равномерно распределенной нагрузке

где g m = 18 кН/м 3 . (7)

Ширину призмы обрушения откоса b , м, определяем по формулам:

при Е ³ 0,167 (8)

при 0,167 > Е ³ 0,1

(9)

при Е

Параметр b находим по черт. 6 в зависимости от параметра hk , определяемого по формуле

(11)

Черт. 1. Графики для определения крутизны откоса при К = 0

Черт. 2. Графики для определения крутизны откоса при К = 1

Черт. 3. Графики для определения крутизны откоса при 1

Черт. 4. Графики для определения крутизны откоса при 2

Черт. 5. Графики для определения крутизны откоса при 3 K

скважин на воду, лицензия на недропользование, как оформить лицензию, подача документов в департамент роснедра»>http :// soyuzproekt . ru Бурение скважин под свайный фундамент . Бурение водопонижающих скважин (либо осущающих скважин ) и обустройство их необходимым насосным оборудованием с автоматикой. Бурение под буроинъекционные сваи, бурение под буронабивные сваи. Скважины различных диаметров.

Формула расчета призмы возможного обрушения откоса карьера. Призма обрушения. Б.И.Дегтерев безопасная организация земляных работ

При решении практических задач из общего напряженного состояния массива грунта обычно выделяют в отдельную задачу определение усилий, передающихся грунтом на вертикальные или наклонные грани сооружения. Типичными конструкциями, для которых существенно важна оценка давления грунта Е, являются различного рода подпорные стены (рис. 6.1, а), стены подвальных помещений (рис. 6.1, б), устои мостов (рис. 6.1, в), гидротехнические сооружения (рис. 6.1, г), ограждения котлованов, перемычки и др.

Рис. 6.1. Давление грунта на различные сооружения.

1 — область («призма») обрушения грунта;

2 — область («призма») выпора грунта.

Как убедительно показали эксперименты и натурные наблюдения, давление грунта Е на сооружение существенно зависит от направления, величины и характера смещений вертикальных или наклонных контактных граней сооружения, по которым происходит взаимодействие с грунтовым массивом.

Рассмотрим влияние смещений на примере простейшей подпорной стены (рис. 6.2). В случае уверенно неподвижной стены (рис. 6.2, в) деформации грунта происходят без бокового расширения и поэтому при действии только собственного веса грунта можно принять σ x = ξσ z = ξγ гр z, где ξ — коэффициент бокового давления грунта (см. раздел 3.3, ф-ла 3.23). При этом суммарное боковое давление на единицу длины стены (в направлении, перпендикулярном плоскости хz) определится как E 0 = ξγ гр h 2 /2. Давление E 0 принято называть давлением покоя , поскольку величина коэффициента ξ в E 0 отвечает случаю отсутствия боковых смещений грунта.

Рис. 6.2. Зависимость давления грунта от величины и направления

горизонтального смещения стенки или сооружения.

Под действием давления грунта могут возникать смещения U сооружения в сторону от грунта засыпки (на рис. 6.2 приняты со знаком минус, т.е. U Шубин М. А. Подготовительные работы при сооружении земляного полотна железной дороги. — М .: Транспорт, 1974.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб. , 1890-1907.

Отрывок, характеризующий Призма обрушения

Если откос массива грунта имеет крутизну больше предельной, то произойдет обрушение грунта. Удержать массив в равновесии можно при помощи подпорной стенки. Подпорные стенки широко применяются в различных областях строительства. На рис. 5.9 показаны некоторые случаи применения подпорных стенок.

Давление грунта, передаваемое призмой обрушения на грань стенки, носит название активного давления Е а . При этом подпорная стенка смещается в сторону от засыпки. Если же подпорная стенка смещается в сторону грунта, то грунт засыпки будет выпирать вверх. Стенка будет преодолевать вес грунта призмы выпирания, что потребует значительно большего усилия. Это соответствует пассивному давлению (отпору) грунта Е р .

Читайте так же:
Lisp для autocad откосы

Поскольку в пределах призмы обрушения возникает предельное равновесие, задача по определению давления грунта на подпорную стенку решается методами теории предельного равновесия со следующими допущениями: поверхность скольжения плоская, а призма обрушения соответствует максимальному давлению грунта на подпорную стенку. Эти допущения адекватны только для определения активного давления.

5.5.1. Аналитический метод определения давления грунта

на подпорную стенку

Рассмотрим условие предельного равновесия элементарной приз-

мы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .

Из условия предельного равновесия на глубине z

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z , т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н , давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

5.5.2. Давление грунтов на подземные трубопроводы

Давление грунта на трубопровод определяют на основе общей теории предельного напряженного состояния. Вертикальное давление в грунтовом массиве, ограниченном горизонтальной поверхностью, на глубине z (рис. 5.12, а ) с удельным весом грунта определяют по формуле

Боковое давление грунта на той же глубине

где – коэффициент бокового давления грунта в условиях естественного залегания, равный .

Если в зоне, контуром которой является трубопровод, грунт в точности заменить самим трубопроводом (рис. 5.12, б ), то естественно, что этот трубопровод будет испытывать давление, которое определяется зависимостями (5.26) и (5.27).

Давление на трубопровод передается сверху и с боков и вызывает равную и противоположно направленную реакцию основания: оно принимается в виде среднего равномерно распределенного давления – вертикального интенсивностью р и горизонтального интенсивностью q , причем имеет место соотношение р > q . Следует различать три принципиально различных способа прокладки трубопроводов: в траншее (рис. 5.13, а ), с помощью закрытой проходки (прокола) (рис. 5.13, б ) и под насыпью (рис. 5.13, в ).

При одинаковой глубине заложения Н трубопроводов давление р будет различным: при траншейной укладке р и при проколе, если Н сравнительно мало, р = , при больших значениях Нр

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector