Zabor-33.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет устойчивости откосов маслов

Расчет устойчивости склонов 2

Рис. 1. Схема к расчету устойчивости склона по круглоцилиндрической поверхности скольжения.

Метод расчета устойчивости склона по круглоцилиндрической поверхности скольжения (рис. 1) применяется для исследования устойчивости склонов (откосов), сложенных однородными грунтами. При наличии на склоне сооружений весом Рс и выше поверхности скольжения потока грунтовых под коэффициент устойчивости склона определяется по формуле:

(1)

где Рі В – вес грунта в пределах расчетного i-го элемента (Pi В = γw S1 + γ p S2), Н/м;

αi – угол наклона поверхности скольжения к горизонту в пределах расчетного элемента, град;

Рс – вес сооружении, Н/м;

αc – угол между вектором силы Рс и направлением от поверхности скольжения кцентру кривой скольжения, град;

φc и сi – угол внутреннего трения, град, и удельное сцепление грунта на поверхности скольжения, Па, в пределах расчетного элемента;

li – длина элемента, м;

R – радиус кривой скольжения, м;

S1 – площадь сечения расчетного элемента, где грунт имеет естественную влажность, м 2 ;

S 2 – площадь сечения расчетного элемента, занятая фильтрационным потоком, м 2 ;

е — плечо действия силы (веса грунта расчетного элемента) относительно центра кривой скольжения, м;

γw – плотность грунта естественной влажности, кг/м 3 ;

а и d – плечи действия горизонтальной силы Gr и веса Рс относительно центра кривой скольжения, м;

Gг – горизонтальная сила, приложенная к сооружению, Н/м;

Ii – гидравлический градиент и аф – плечо действия фильтрационного давления, м, в i-м элементе;

γ p – плотность грунта, взвешенного подземными водами, кг/м э .

В силовой форме уравнение (1) записывается так:

где – суммарное фильтрационное усилие, действующее в горизонтальном направлениина грунт i-гo элемента, Н/м;

высота от поверхности скольжения докривой депрессии по оси расчетного элемента, м;

– ширина расчетного элемента, м

Сейсмическое воздействие на склоны проявляется как в прямом силовом воз­действии на смещающиеся оползневые блоки, так и во влиянии на прочностные характеристики грунтов. При этом наибольшая потеря прочности наблюдается в рыхлых пылеватых и песчаных массах, находящихся в водоиасыщенпом состоянии. В результате сейсмического воздействия они могут разжижаться и оплывать.

Силовое воздействие на оползневые блоки пород зависит от сейсмического коэффициента сотрясения

где βс – наибольшее сейсмическое ускорение для принятого района, м/с 2 .

g – ускорение свободного падения, м/с 2

Сейсмическая инерционная сила определится через вес Pi оползневых масс, ограниченных поверхностью скольжения и лисиной поверхностью склона:

При вычислении коэффициента устойчивости склона учитывается как верти­кальная Sc.b = ± Sc sin γ так и горизонтальная Sc = ± Sc cos γ составляющие сейсмической инерционной силы.

Таким образом, коэффициент устойчивости склона с учетом сейсмического воз­действия составит:

где γ – угол атаки сейсмического импульса к горизонту, град;

m и r — плечи линий воздействия горизонтальной и вертикальной составляющих сейсмической инерционной силы, м.

Поиск центра наиболее опасной поверхности скольжения проводят в двух взаимно перпендикулярных направлениях, по которым откладывают вычисленные значения коэффициента устойчивости склона. Если в разрезе склона имеется прослойка слабых пород, положение кривой скольжения выбирают так, чтобы большая ее часть приходилась на слабые породы

Расчет устойчивости откоса

    Дмитрий Малявко 3 лет назад Просмотров:

1 ООО «БелЭкспертПроект» ООО «ЭкспертПроектСтрой» Реконструкция биогазовой станции «Лучки» расположенной в с. Лучки, Прохоровского района, Белгородской области Расчет устойчивости откоса Навозонакопители 2016

2 ООО «БелЭкспертПроект» ООО «ЭкспертПроектСтрой» Реконструкция биогазовой станции «Лучки» расположенной в с. Лучки, Прохоровского района, Белгородской области Расчет устойчивости откоса Навозонакопители Директор С.Л.Груздова Изм докумен. Подпись Дата Разраб. Резниченко Расчет устойчивости откоса Проверил Груздова П 1 Нач.отдела Груздова ГИП Главный инженер проекта Тихонова Е.А. Тихонова Стадия ов ООО «БелЭкспертПроект» 000 «ЭкспертПроектСтрой»

Читайте так же:
Определение объемов работ по устройству откосов

3 Оглавление 1. Исходные данные Характеристика сооружений Расчет откоса графоаналитическим методом многоугольников сил Г.М. Шахунянца Расчет откоса методом Федоровского-Курилло Выводы по результатам поверочных расчетов устойчивости откоса и рекомендации по его усилению Расчет откоса после усиления. 9 Изм докум. Подп. Дата 2

4 1. Исходные данные Характеристика сооружений Навозохранилище представляет собой 2 сооружения, прямоугольные в плане, с размерами по внешней бровке 100х70 м каждое. Глубина общая 5 м, рабочая 3,5м. Изм докум. Подп. Дата Рис. 1 Схема расположения навозохранилища 3

5 Рис.2 Поперечный разрез борта навозохранилища Борта навозохранилищ сложены уплотнённым грунтом со следующими характеристиками: ИГЭ-3 — суглинок светло-коричневый (d II-III ) твердый низкопористый просадочный. Мощность слоя составляет 2,6м 4,2м. Частные значения характеристик суглинка, их квадратичные отклонения и коэффициенты вариации приведены в приложении 3.5. Нормативное значение компрессионного модуля деформации суглинка в интервале давления 0,1-0,2МПа составляет 4,5МПа при естественной влажности и 2,9МПа в замоченном состоянии. С учётом корректировочного коэффициента на штампоопыты m k, равного 3,6 (т.5.1 СП ), значение модуля деформации составляют соответственно 16 и 10МПа. Степень изменчивости сжимаемости грунта составляет 1,6. Суглинки в условиях замачивания под нагрузкой обладают просадочными свойствами. Относительная просадочность (доли единиц) составляет при нагрузках (МПа): 0, ,0033 0, ,0067 0, ,0104 0, ,0140 0, ,0175 0, ,0215 Начальное давление, при котором проявляются просадочные свойства суглинков, составляет 0,15МПа (1,5 кг/см 2 ). Тип грунтовых условий по просадочности первый (СНиП *. Основания зданий и сооружений). Значения показателей прочности суглинка по результатам лабораторных испытаний в условиях неконсолидированного среза с предварительным водонасыщением составляют: Расчетное при 0,85 Нормативное Расчетное при 0,95 17 Удельное сцепление , кпа 18 Угол внутреннего трения , град. Таблица 1. Расчетные характеристики грунта Параметры среза Модуль Номенклатурный вид Плотность Сцеплени ИГЭ грунта Т/м 3 дефор. Угол внутр. е МПа трения, градус кпа Суглинок твердый 3 1,77/1,76 16/10 17/16 18/18 просадочный Изм докум. Подп. Дата 4

6 Согласно 9.14 СП Основания зданий и сооружений, при проектировании оснований подземных частей сооружений, устраиваемых с обратной засыпкой грунта, расчетные значения характеристик грунтов обратной засыпки (γ I,φ I, c I), уплотненных не менее чем до k сот = 0,95 их плотности в природном состоянии, допускается устанавливать по расчетным характеристикам тех же грунтов в природном состоянии (γ I,φ I, c I), принимая γ I = 0,95γ I ; φ I = 0,9φ I ; c I = 0,5c I, при этом следует принимать c I не более 7 кпа. Характеристики грунта после устройства борта навозохранилища: γ I = 0,95 х 1,77 = 1,68 т/м3; φ I = 0,9 х 18 = 16.2 градуса; c I = 0,7 т/м Расчет откоса графоаналитическим методом многоугольников сил Г.М. Шахунянца В основе расчета сохраняется гипотеза затвердевшего тела. Эта гипотеза нарушается, если поверхность смещения не плоскость и не поверхность круглого цилиндра (по которым вышележащий массив действительно может смещаться, как одно целое), так как при любом ином очертании поверхности при смещении в массиве возникают местные напряжения. Но эти местные напряжения могут при движении массива создавать лишь чисто местный эффект в виде отдельных трещин разрыва или местных уплотнений грунта. Так как расчет ведется для определения условий устойчивости массива, то представляется возможным сохранить как рабочую гипотезу предположение о затвердевшем теле. Данное предположение лежит в обычных рамках тех допущений, которые приняты практически в обычных расчетах строительной механики. В большом количестве случаев строительных расчетов деталь рассматривается как одно целое и рассчитывается на общие напряжения. Если требуется, то дополнительно учитывается влияние местных напряжений. Рис.3 Расчетная схема откоса Изм докум. Подп. Дата 5

Читайте так же:
Монтаж откосов железной двери

7 Рассмотрим наиболее вероятную поверхность смещения и определим основные характеристики откоса для расчета его устойчивости: S площадь сечения откоса, м 2 ; l длина площадки смещения, м; P вес полосы откоса шириной 1м, т; N нормальная составляющая силы P к плоскости поверхности смещения откоса, т; Q тангенциальная составляющая силы Р, т; T сила трения, т; α угол наклона плоскости смещения к горизонтальной поверхности. Вес полосы откоса шириной 1 м определяется как произведение площади сечения S на удельный вес грунта в обводнённом состоянии γ в, с учетом коэффициента по нагрузке γ n =1,2. Значения N и Q определяются, к векторная сумма, равная Р. Сила трения T = N tg φ I. Исходные данные сведены в таблицу: Таблица 2. Исходные данные S, м2 l, м α, градус α, рад P, т N, т Q, т С, т T, т Согласно СП расчет противооползневых и противообвальных сооружений, проектируемых откосов и склонов производится исходя из условия: где F — расчетное значение обобщенного силового воздействия на сооружение или его конструктивные элементы (сила, момент, напряжение), определяемое в соответствии с СП , деформации (смещения) или другие параметры, по которым производится оценка предельного состояния; ψ — коэффициент сочетания нагрузок, принимающий значения: При расчетах по предельным состояниям первой группы: для основного сочетания эксплуатационного периода ψ 1,0; то же, для строительного периода и ремонта ψ=0,95; для особого сочетания нагрузок, в том числе сейсмической нагрузки на уровне проектного землетрясения (ПЗ) годовой вероятностью 0,01ψ 0,95; прочих нагрузок годовой вероятностью 0,001 и максимального уровня расчетного землетрясения (МРЗ) ψ 0,90. При расчетах по предельным состояниям второй группы на основное сочетание нагрузок ψ 1,0; R — расчетное значение обобщенной несущей способности, прочности, деформации (смещения) или другого параметра, устанавливаемого соответствующими нормами проектирования в зависимости от типа конструкции и используемых материалов с учетом коэффициентов надежности по материалу γ m и (или) грунту γ g ; γn — коэффициент надежности по ответственности сооружения: При расчетах по предельным состояниям первой группы в зависимости от уровня ответственности согласно ГОСТ Р 54257: 1а — γ n 1,25; 1б — γ n 1,20 ; 2 — γ n 1,15 ; 3 — γ n 1,10. При расчетах по предельным состояниям второй группы γ n 1,00. При расчетах устойчивости склонов, сохраняемых в естественном состоянии, γ n принимается как для сооружения или территории, которые могут перейти в непригодное состояние при разрушении склона. При расчетах природных склонов γ n 1,0; Изм докум. Подп. Дата 6

8 γd — коэффициент условий работы, учитывающий характер воздействий, возможность изменения свойств материалов со временем, степень точности исходных данных, приближенность расчетных схем, тип сооружения, конструкции или основания, вид материала и другие факторы; устанавливается в диапазоне 0,75 γ d 1,00 нормами проектирования отдельных видов сооружений. Расчет устойчивости проектируемых склонов и откосов в соответствии с зависимостью 5.1 допускается выполнять только для простейших форм поверхности скольжения, отделяющей призму обрушения от неподвижного массива грунта (в виде отрезка прямой или окружности). В этом случае зависимость 5.1 записывается в виде: где — нормированное значение коэффициента устойчивости склона (откоса); k st — расчетное значение коэффициента устойчивости, определяемое как отношение удерживающих сил (моментов) R, действующих вдоль линии скольжения, к сдвигающим силам (моментам) F. Результаты расчета сведены в таблицу: Таблица 3. Результаты расчета R, т F, т К st ψ γ n γ d [K st ] K st /[K st ] Вывод: при данных параметрах откос является неустойчивым и требует усиления. Отношение расчетного значения коэффициента устойчивости к нормированному K st /[K st ]=0, Расчет откоса методом Федоровского-Курилло Расчет проведён в расчетном комплексе SCAD Office 11.5, в модуле «Откос». Схема откоса Список грунтов Наименование Суглинок просадочный Угол внутреннего трения Удельное сцепление Удельный вес град Т/м 2 Т/м Тип Скважины Наименование Координата (м) Описание скважин Грунт Изм докум. Подп. Дата Отметка верхней границы 1) 1 0 Суглинок просадочный 208 2) 2 1 Суглинок просадочный 208 3) Суглинок просадочный ) Суглинок просадочный ) 5 15 Суглинок просадочный

Читайте так же:
Чжао ин длинный откос

9 Параметры расчета Номер задачи Левая граница начала оползня Правая граница начала оползня Левая граница конца оползня Правая граница конца оползня м м м Допускаемая погрешность 0.01 м Линии скольжения Номер задачи Коэффициент запаса устойчивости Цвет лини скольжения Вывод: при данных параметрах откос является неустойчивым и требует усиления. Коэффициент запаса устойчивости K=0,948. Откос необходимо укрепить методом устройства предохранительной бермы. Методика усиления приведена в техническом решении приложения 1. Изм докум. Подп. Дата 8

10 4. Выводы по результатам поверочных расчетов устойчивости откоса и рекомендации по его усилению 1. Устойчивость откоса лагуны при условии полного замачивания грунта земляного сооружения не обеспечена. 2. Наиболее вероятная линия скольжения откоса указана на рис Основными нагрузками на земляное сооружение откоса лагуны, приводящими к сдвигу массива являются: — давление жидкости; — собственный вес обводнённого грунта. 4. С целью обеспечения гарантируемой устойчивости откоса необходимо его усиление одним из следующих способов: — создание предохранительной бермы; — уполаживание откоса. 5. Рекомендуется усиление созданием предохранительной бермы. 5. Расчет откоса после усиления Расчет откоса после усиления представлен двумя расчетными схемами: Рис.4 Расчетная схема откоса после усиления 1 Рис.5 Расчетная схема откоса после усиления 2 Изм докум. Подп. Дата 9

11 Методика расчета приведена в разделе 2 данного отчёта. Исходные данные сведены в таблицу: Таблица 3. Исходные данные Сечение S, м2 l, м α, градус α, рад P, т N, т Q, т С, т T, т Результаты расчета сведены в таблицу: Таблица 4. Результаты расчета R, т F, т К st ψ γ n γ d [K st ] K st /[K st ] Вывод: при данных параметрах откос после усиления является устойчивым. Отношение расчетного значения коэффициента устойчивости к нормированному K st /[K st ]=2,34 для верхнего откоса и 1.75 для нижнего. Требуемый объем грунта для устройства предохранительной бермы м 3. Изм докум. Подп. Дата 10

Рекомендации по р асчёту устойчивости откосов земляного полотна

РЕКОМЕНДАЦИИ ПО Р АСЧЁТУ УСТОЙЧИВОСТИ ОТКОСОВ ЗЕМЛЯНОГО ПОЛОТНА

Кондрашова Е.В., Скворцова Т.В. (ВГЛТА, г. Воронеж, РФ)

In given article recommendations about calculation of stability of slopes of an earthen cloth are presented. Calculation of stability of slopes and slopes on durability is reduced to definition of factor of a stock of stability.

Земляное полотно – один из основных элементов автомобильной дороги, от устойчивости, прочности и долговечности которого зависит работоспособность дорожных одежд и всего сооружения.

Геодезической основой расчетной схемы являются расчетные поперечники, характеризующиеся наиболее неблагоприятным сочетанием различных факторов, таких, как высота и крутизна склона, мощность смещающихся масс, расположение слабых прослоек, наклон слоев, уровень грунтовых вод и др.

Устойчивость склонов и откосов рассчитывают из условий плоской задачи:

по прочности (1-е предельное состояние);

деформируемости (2-е предельное состояние).

Расчет устойчивости склонов и откосов по прочности сводится к определению коэффициента запаса устойчивости с помощью различных расчетных методов (метод круглоцилиндрической поверхности скольжения, метод горизонтальных сил Маслова-Берера, метод Шахунянца, метод наклонных сил Чугаева и др.), а также к сравнению его с требуемой величиной.

Читайте так же:
Что такое заложение верхового откоса

Расчетные характеристики грунтов (объемная масса, угол внутреннего трения и сцепление) следует принимать соответствующими наименее благоприятным условиям устойчивости оползневого склона в годовом и многолетнем циклах.

Целью разработки проекта устройства насыпи был выбор технических решений наиболее рациональных с позиций экономических, технологических, экологических и временных, обеспечивающих надежную конструкцию земляного полотна [1,2].

Особенности при выполнении работ:

Выполнение работ по возведению насыпи требует особого внимания к контролю качества ведения работы и её результатов по каждому технологическому процессу и организации научного сопровождения хода строительства.

Своевременное регулирование технологии отсыпки и реакция на процесс и тенденции хода осадок и их стабилизации с регламентацией технологических перерывов.

Соблюдение указаний нормативных документов.

Порядок расчёта устойчивости откосов земляного полотна разработан в соответствии с «Указаниями по расчёту высоких насыпей и глубоких выемок автомобильных дорог».

Коэффициент запаса устойчивости откоса земляного полотна

где — нормальная, по отношению к поверхности скольжения, составляющая веса вышележащего слоя грунта, м;

— длина дуги скольжения в пределах грунта насыпи и основания, м;

— касательная к дуге скольжения составляющая сила веса, т;

— вес грунта в объёме отсека, т;

— угол внутреннего трения грунта насыпи и основания.

Таблица 1 – Допускаемые значения коэффициента П

Песчаные грунты с постоянной влажностью

Глинистые грунты с постоянной влажностью и песчаные с переменной влажностью

Глинистые грунты с переменной влажностью

Коэффициент запаса устойчивости откосов оползневых участков после проведения противооползневых мероприятий принимается при расчете по прочности не менее 1,3. При учете сейсмического воздействия величина активных сдвигающих сил должна быть увеличена на сейсмический коэффициент К с =1,031,1. Если общая устойчивость склонов и откосов земляного полотна обеспечена ( К зап =1,3), но есть опасность развития длительных деформаций ползучести во времени, необходимо дополнительно выполнять расчеты по деформируемости.

Устойчивость оползневых склонов по деформируемости особенно следует проверять в тех случаях, когда угол внутреннего трения грунтов, слагающих склон, незначителен, а структурное сцепление С с равно нулю (пластичные глинистые грунты и др.).

Если в формуле (2) задаться значением запаса устойчивости п у , то, решив ее относительно h , можно найти значение проектной мощности оползня, обеспечивающей заданный запас устойчивости, по формуле

где γ — объемный вес грунтов оползневой массы в элементарной призме;

φ’ и С’ — угол внутреннего трения и сцепление грунтов по поверхности скольжения оползня.

Определение вида и центра критической дуги скольжения, при которой коэффициент запаса устойчивости будет минимальным, проводится методом последовательного приближения с повторением расчёта устойчивости для нескольких дуг с наименее выгодным соотношением удерживающих и сдвигающих сил. При назначении радиуса дуги скольжения следует учитывать, что критическая дуга обычно образует центральный угол 100-135º. Центр критической дуги скольжения отыскивается следующим образом [3].

Расчётная схема №1 (рис. 1). Центр «О» располагается на линии, проходящей через бровку откоса и точку «В», лежащую на глубине Н и расстоянии 3Н от подошвы откоса. Для первого приближения центр критической дуги назначается на пересечении линии СВ и линией АО, проведённой под углом 25º к среднему откосу. При последующих этапах проверки центры О 1 ,О 2 . намечается выше через (0,25-0,3)Н.

Рис. 1 Расчётная схема №1 – для дуг скольжения, проходящих через подошву откоса, кроме случаев, когда угол откоса и .

Читайте так же:
Самый легкий откос от армии

Рис. 2 Расчётная схема №2 для дуг скольжения, проходящих через основание откоса и дуг, проходящих через подошву откоса при

§ 39. Расчет фундаментов на устойчивость против опрокидывания и сдвига

Расчет фундамента на устойчивость должен исключать возможность его опрокидывания, сдвига по основанию и сдвига совместно с грунтом по некоторой поверхности скольжения. Фундамент считают устойчивым, если выполняется условие (6.1), в котором под F понимают силовое воздействие, способствующее потере устойчивости (опрокидыванию или сдвигу) фундамента, а под Fu — сопротивление основания или фундамента, препятствующее потере устойчивости. Расчеты устойчивости выполняют по расчетным нагрузкам, полученным умножением нормативных нагрузок на коэффициенты надежности по нагрузке. Если для одной и той же нагрузки нормами предусмотрены два коэффициента надежности, то в расчете учитывают тот из них, при котором будет меньший запас устойчивости.


Рис. 7.7. Схема к расчету фундамента на устойчивость против опрокидывания

При расчете фундаментов опор мостов на устойчивость против опрокидывания все внешние силы, действующие на фундамент (включая его собственный вес), приводят к силам Fv, Qr и моменту Мu (рис. 7.7). Силы Fv и Qr равны проекциям всех внешних сил соответственно на вертикаль и горизонталь, а момент Ми равен моменту внешних сил относительно оси, проходящей через центр тяжести подошвы фундамента перпендикулярно расчетной плоскости. Момент Ми способствует опрокидыванию фундамента (повороту его вокруг оси О — см. рис. 7.7). Момент Mz, сопротивляющийся опрокидыванию, будет равен Fva, где а — расстояние от точки приложения силы Fv до грани фундамента, относительно которой происходит опрокидывание.

Устойчивость конструкций против опрокидывания следует рассчитывать по формуле
Ми≤(ус/уn)Мz, (7.5)
где Мu и Мz — моменты соответственно опрокидывающих и удерживающих сил относительно оси возможного поворота (опрокидывания) конструкции, проходящей по крайним точкам опирания, кН·м; ус — коэффициент условий работы, принимаемый при проверке конструкций, опирающихся на отдельные опоры, для стадии строительства равным 0,95; для стадии постоянной эксплуатации равным 1,0; при проверке сечений бетонных конструкций и фундаментов на скальных основаниях, равным 0,9; на нескальных основаниях — 0,8; уn — коэффициент надежности по назначению сооружения, принимаемый равным 1,1 при расчетах для стадии постоянной эксплуатации и 1,0 при расчетах для стадии строительства.

Опрокидывающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы.

Удерживающие силы следует принимать с коэффициентом надежности по нагрузке для постоянных нагрузок Уf где µ — коэффициент трения фундамента по грунту.

В соответствии с требованиями СНиП 2.05.03—84 устойчивость конструкций против сдвига (скольжения) следует рассчитывать по формуле
Qr≤(yc/yn)Qz, (7.6)
где Qr — сдвигающая сила, кН, равная сумме проекций сдвигающих сил на направление возможного сдвига; ус — коэффициент условий работы, принимаемый равным 0,9; уn — коэффициент надежности по назначению сооружения, принимаемый как и в формуле (7.5); Qz — удерживающая сила, кН, равная сумме проекций удерживающих сил на направление возможного сдвига.

Сдвигающие силы следует принимать с коэффициентом надежности по нагрузке, большим единицы, а удерживающие силы — с коэффициентом надежности по нагрузке, указанным в экспликации к формуле (7.5).

В качестве удерживающей горизонтальной силы, создаваемой грунтом, допускается принимать силу, значение которой не превышает активного давления грунта.

Силы трения в основании следует определять по минимальным значениям коэффициентов трения подошвы фундамента по грунту.

При расчете фундаментов на сдвиг принимают следующие значения коэффициентов трения µ кладки по грунту:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector