Zabor-33.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициент запаса устойчивости откоса снип

Условие устойчивости и коэффициент запаса устойчивости

Основой оценки устойчивости массивов грунта является сопоставление их действительного расчетного напряженного состояния с предельно возможным. В основу современных инженерных методов оценки устойчивости сооружений положено понятие о коэффициенте запаса устойчивости к3, который в самом общем случае можно представить в виде

где Я — «обобщенное» реактивное предельное сопротивление грунта действию разрушающей (предельной) нагрузки; Яд — реакция массива грунта на действующую нагрузку. Таким образом, к3 имеет определенный физический смысл и показывает, в какой мере использовано возможное предельное сопротивление грунта. Весьма существенно, что при этом сопоставляются только одинаковые по природе реактивные силы —- предельные и действующие.

Кроме того, должно выполняться условие равновесия Яа-А = С, (7.2)

где А — «обобщенная» активная сила, соответствующая рассматриваемому (действительному) состоянию грунтового массива.

Совместное решение уравнения физического понятия о коэффициенте запаса устойчивости (7.1) и уравнения равновесия (7.2) приводит к выражению для ка в виде

При оценке устойчивости сооружений по условию (7.3) основные затруднения возникают в определении предельного сопротивления. Для этого применяют различные пути, которые приводят к описанным ниже, иногда несовпадающим, величинам к3.

В случае действия на сооружение только вертикальной нагрузки

С> величина Я легко определяется из условия равновесия Я =

где С?пр — предельная вертикальная нагрузка в условиях, когда грунт основания перешел в состояние предельного равновесия. В результате величина коэффициента запаса будет определяться соотношением предельно возможной нагрузки и действующей, т. е.

Аналогично, в случае, когда на сооружение действует постоянная сила С> и изменяется только горизонтальное усилие Е, величина ка определяется однозначно как К = Е ^/Е. (7.5)

При возможном изменении как величин (2, так и Е (рис. 7.3, а) выбор величины Я и оценки к3 по зависимостям типа (7.4) или (7.5)
становится затруднительным. Переход в предельное состояние возможен как за счет увеличения ф, так и Е или соответствующих им напряжений по подошве аит.В результате может быть построена кривая предельных нагрузок (В. И. Новоторцев) (рис. 7.3,6). Координаты всех точек этой кривой дают значения о или 0. и т или Е, при которых нарушается устойчивость. Для каждого заданного значения о или (2 можно найти соответствующее значение % или Е, вызывающее нарушение устойчивости основания, и наоборот. При малых вертикальных нагрузках на основании кривая предельных нагрузок близка к прямой, а ее угол наклона близок к углу внутреннего трения грунта (рис. 7.3, б). Характерно, что на этом близком к линейному участке кривой предельных нагрузок нарушение устойчивости происходит в основном по плоскости подошвы сооружения или по другой, но малозаглуб- ленной поверхности скольжения.

Рис. 7.3. Кривые предельных нагрузок на основание из связного (с ф 0) и несвязного грунта (с = 0)

В ряде случаев коэффициент запаса определяют из соотношения характеристик сопротивления грунтов сдвигу, при которых происходит разрушение оснований и откосов, к фактически имеющимся значениям этих характеристик, т. е.

Так, например, коэффициент запаса устойчивости сооружения, схема которого показана на рис. 7.3, а в предположении сдвига по подошве сооружения

и заданных нагрузках ф и Е по зависимостям (7.3, 7.5) или (7.8), будет

1 = ( 1 учитывает капитальность сооружения, его ответственность и значение последствий его разрушения. Коэффициент т учитывает главным образом приближенность расчетных схем, особенности работы сооружения, не отраженные в расчетной модели.

Кроме того, расчетная величина силы А определяется с учетом своих коэффициентов запаса п, так называемых коэффициентов перегрузки, учитывающих вариацию нагрузок относительно их нормативных значений и могут быть различными для отдельных видов нагрузок, т. е. А = В свою очередь, обобщенная сила Я = 2%°/кг,

где кг— коэффициенты безопасности по материалу, в данном случае коэффициенты безопасности по грунту. В результате через дифференцированные коэффициенты запаса условие (7.1) имеет вид

где пс, Пи т, кн, ке <— система коэффициентов, больших или меньших единицы, учитывающих практически все факторы, определяющие устойчивость сооружения. Такой современный подход к оценке устойчивости сооружений безусловно прогрессивен и позволяет более обоснованно учитывать влияние многочисленных факторов.

Величины всех этих коэффициентов регламентируются соответствующими нормативными документами. Естественно, что в случае, когда в условии (7.14) соблюдается знак равенства, будет получено наиболее экономичное решение инженерной задачи.

В принципе никакой разницы в использовании условий (7.14) или (7.3) совместно с (7.16) нет. Первое ярче раскрывает роль различных факторов в оценке устойчивости сооружений, а второе иногда удобнее для проектировщика, так как величина к3 или 1 /&3 позволяет более наглядно для каждого варианта сооружения оценить степень использования силы предельного сопротивления.

Расчетное сопротивление грунта основания

Определение расчетного сопротивления грунта онлайн и с помощью таблиц СНиП. Несущая способность глинистых и песчаных грунтов.

Читайте так же:
Откос для суглинков снип

Расчетное сопротивление грунта (R) – это один из наиболее важных параметров при строительстве фундамента, так как позволяет определить предельно возможные значения массы вышележащей конструкции, которую способна выдержать подстилающая поверхность.

В случае превышения допустимых значений показателя несущей способности грунта, под подошвой фундамента формируются области предельного равновесия. Другими словами, грунт расположенный снизу не выдерживает нагрузки и стремится в сторону наименьшего сопротивления, то есть на поверхность. Последствия выражаются в виде бугров и валов, расположенных рядом с границами фундамента.

Самой главной опасностью в данном случае, является нарушение однородности подстилающего грунта. Нагрузка от конструкции начинается распределяться неравномерно, фундамент теряет свою устойчивость, активизируются процессы деформации и в скором времени начинают появляться трещины.

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m 2 , тс/м 2 , кгс/см 2 ). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

  • Тип расчета. На основании лабораторных испытаний или при неизвестных характеристиках грунта.
  • Характеристики грунта. Тип, коэффициент пористости и показатель текучести, а также осредненное расчетное значение удельного веса грунтов.
  • Параметры фундамента. Ширина основания и глубина заложения.

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

  • Намочите почву до состояния, когда из нее можно будет сформировать шар.
  • Попробуйте раскатать шар в продолговатое тело (шнур).
    • Если у вас не получилось этого сделать, то перед вами песчаная почва.
    • Если немного схватывается, но все равно разрушается – это супесь.
    • Если шнур удается свернуть в кольцо, но наблюдаются разрывы/трещины – это суглинок.
    • Если кольцо замкнулось, а тело осталось невредимым – это глина.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите «Рассчитать«.

Несущая способность грунта – Таблица СНиП

Для определения несущей способности глинистых грунтов, нам необходимо получить еще два коэффициента – показатель текучести грунта (IL) и коэффициент пористости (е). Первый показатель можно достаточно легко определить на глаз, если почва откровенно сырая и вязкая – выбирайте IL = 1, если сухая и грубая – IL = 0. Второй коэффициент можно получить только в таблицах из СНиП. Так как все данные находятся в открытом доступе, для вашего удобства мы скопировали таблицы расчетного сопротивления грунта из СП 22.13330.2011.

Несущая способность глинистых грунтов

Глинистые грунты

Коэффициент пористости е

Значения R, кПа, при показателе текучести грунта

Прогибы и перемещения

Нормы настоящего раздела устанавливают предельные прогибы и перемещения несущих и ограждающих конструкций зданий и сооружений при расчете по второй группе предельных состояний независимо от применяемых строительных материалов.

Читайте так же:
Чем приклеить уголки для откосов

Нормы не распространяются на сооружения гидротехнические, транспорта, атомных электростанций, а также опор воздушных линий электропередачи, открытых распределительных устройств и антенных сооружений связи.

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

(25)

где f — прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu — предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований — от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

ВЕРТИКАЛЬНЫЕ ПРЕДЕЛЬНЫЕ ПРОГИБЫ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

10.7. Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в табл. 19. Требования к зазорам между смежными элементами приведены в п. 6 рекомендуемого приложения 6.

Вертикальные предельные прогибы fu

Нагрузки для определения вертикальных прогибов

1. Балки крановых путей под мостовые и подвесные краны, управляемые:

с пола, в том числе тельферы (тали)

От одного крана

из кабины при группах режимов работы (по ГОСТ 25546-82):

Коэффициент запаса устойчивости откоса снип

3.9. Устойчивость кранов

Под устойчивостью крана понимается его способность противодействовать опрокидывающим моментам.

Расчет устойчивости крана производится при действии испытательной нагрузки, действии груза (грузовая устойчивость), отсутствии груза (собственная устойчивость), внезапном снятии нагрузки и монтаже (демонтаже).

Расчет устойчивости производится в соответствии с нормативными документами, например, РД 22-145-85 «Краны стреловые самоходные. Нормы расчета устойчивости против опрокидывания». Соотношение между восстанавливаю щим и опрокидывающим моментами определяет степень устойчивости крана против опрокидывания. Для разных положений крана значения опрокиды вающих и восстанавливающих моментов различны, так как изменяются значения действующих сил, их плечи и положение центра тяжести крана. Устойчивость крана должна быть обеспечена для всех его положений при любых возможных комбинациях нагрузок. К этим нагрузкам для передвижного поворотного крана относятся:

— вес поднимаемого груза;

— инерционные силы при пуске или торможении меха­ низмов крана;

— центробежные силы, возникающие при вращении поворотной части крана;

— сила давления ветра на груз и элементы крана.

Таким образом, различают грузовую устойчивость, то есть способность крана противодействовать опрокидывающим моментам, создаваемыми весом груза, силами инерции, ветровой нагрузкой рабочего состояния, и собственную устойчивость — способность крана противодействовать опрокидывающим моментам при нахождении крана в рабочем (в том числе без груза) и нерабочем состояниях.

Условия проверки грузовой устойчивости (рис. 3.26,а): кран стоит на наклонной местности, подвержен дейст­вию ветра (по нормам для рабочего состояния) и поворачивается, одновременно тормозится спускаемый груз; стрела установлена поперек пути (при установке стрелы вдоль пути может одновременно происходить и торможение движущегося крана); на кран действуют вес груза, силы инерции, возникающие при торможении спус­каемого груза и движущегося крана, силы инерции от вращения крана, ветровая нагрузка. Расчет устойчивости производится для всех вылетов.

Читайте так же:
Витилиго откос от армии

3.26. Схема расчета устойчивости стрелового крана

Условия проверки собственной устойчивости (рис. 3.26, б): кран стоит на наклонной местности, вылет стрелы мини­мальный; кран подвержен только действию ветра (по нормам для нерабочего состояния). Расчет производится только для минимального вылета. Величина запаса устойчивости характеризуется коэффициентом устойчивости и устанавливается нормативными документами.

Коэффициентом грузовой устойчивости называют отношение момента относи­тельно ребра опрокидывания, создаваемого весом крана с учетом дополнительных нагрузок (ветро­вая нагрузка, силы инерции, возникающие при пуске или тормо­жении механизмов подъема груза, поворота или передвижения крана) и влияния наибольшего допускаемого при работе крана уклона, к моменту , создаваемому рабочим грузом относительно того же ребра. Этот коэффициент должен быть не менее 1,15, то есть :

.

Ребром опрокидывания является линия, проходящая через точку контакта колеса и рельса, относительно которой кран стремится опрокинуться.

Коэффициентом собственной устойчивости называют отношение момента, соз­даваемого весом крана, с учетом уклона пути в сторону опрокидыва­ния относительно ребра опрокидывания к моменту, создаваемому ветровой на­грузкой при нерабочем состо­янии крана относительно того же ребра опрокиды­вания. Этот коэффициент также должен быть не менее 1,15.

Для определения числовых значений коэффициентов устойчивости необходимо определить силы, действующие на кран; плечи, на которых дейст­вуют эти силы и создаваемые ими моменты. На рис. 3.26, а показан железнодорожный кран в рабочем состоянии и действующие на него силы. Точка О представляет собой ребро опрокидывания, а точка цт — положение центра тяжести крана.

Силы, действующие на кран, и плечи этих сил следующие:

= Qcos — нормальная составляющая веса крана, действующая на плече ( а+в ) относительно ребра опрокидывания;

— составляющая веса крана, действующая параллельно плоскости вращения крана на пле­че h 2 ;

— сила давления ветра, действующая на плече h 1 на подветренную площадь крана Fk и зависящая от удельного давления ветра р при рабочем

W 2 = pF г — сила давления ветра на подветренную площадь груза F г , действующая на плече h 3 при ветре рабочего состояния;

Gr — вес наибольшего рабочего груза, дейст­вующего на плече ( L — в ) cos + h 3 sin ;

G ит — сила инерции груза при торможении, действую­щая на плече ( L -в ) cos + + h 3 sin ; величина этой силы равна:

где t т — время торможения, с;

v оп — скорость опускания груза, м/с, принимаемая как v оп =1,5 v п ;

v п — скорость подъема груза, м/с;

G ив — центробежная сила груза , возникающая при вращении крана и действующая на плече h 3 относительно ребра опрокидывания. Величина этой силы:

где ;

R – радиус вращения груза, м.

При вращении крана канат, на котором висит груз, под действием силы инерции отклонится от вертикали на угол . Следовательно, радиус вращения груза превысит вылет крана на некоторую величину с. Угол отклонения каната определится из равенства

откуда следует, что

,

а ра диус вращения груза

.

Окружная скорость груза, м/ с , составляет:

,

где n – скорость вращения крана, мин -1 .

Теперь легко получить значение силы G ив :

Подставляя в исходную формулу центробежной силы полученные выражения легко убедиться, что:

.

Суммарный восстанавливающий момент равен сумме моментов, создаваемых силами Q , G ит , G ив , W 1 и W 2 . Опрокидывающий момент создается силой G г . Тогда коэффициент грузовой устойчивости может быть вычислен по формуле:

Угол наклона принимают равным для башенных строительных кранов примерно 1,5°, для железнодорожных, пневмоколесных, гусеничных, автомобильных и других подобных кранов, работа­ющих без выносных опор, примерно 3°, при работе на выносных опорах — 1,5°. Нормами предусмотрена проверка коэффициента грузовой статической устойчивости, то есть устойчивости крана, находящегося только под воздействием весовых нагрузок (без учета дополнительных сил и уклона площади):

Коэффициент собственной устойчивости крана

,

где M Q — момент, создаваемый весом крана с учетом уклона пути в сторону опрокидывания;

Мв — момент ветровой на­грузки при нерабо­чем состоянии крана относительно ребра опрокидывания.

.

Грузоподъемные машины — это технические устройства циклического действия для подъема и перемещения груза. Их принято делить на домкраты, лебедки, подъемники и краны. ГПМ относятся к объектам повышенной опасности, поэтому их эксплуатация должна осуществляться в строгом соответствии с нормативными документами, в частности, в соответствии с Правилами по кранам.

Уровень требований к ГПМ зависит от условий их эксплуатации (режимов работы). Режимы работы кранов и их механизмов принимаются в соответствии со стандартом 4301/1. В зависимости от максимального числа рабочих циклов и от использования крана по грузоподъемности стандартом определены 8 групп классификации кранов, которые учитываются при выборе конкретной машины.

Основным видом силового оборудования ГПМ являются электрические двигатели, однако находят применение и двигатели внутреннего сгорания, и комбинированные: дизель-электрические, электрогидравлические и др. Особого внимания требуют канаты, используемые в качестве стропов либо тяговых органов в механизмах ГПМ.

Читайте так же:
Угол естественного откоса овса

В общем случае в состав ГПМ входит металлоконструкция и ряд механизмов: подъема, передвижения, изменения вылета, поворота. Требования к их расчету и конструированию установлены нормативными документами. Широкое применение на складах и в производственных цехах заводов находят однобалочные и двухбалочные мостовые краны общего назначения и специального назначения. Разновидностью мостовых кранов являются краны-штабелеры, применяемые преимущественно на складах тарн о- штучных грузов.

На открытых складах грузопереработка осуществляется с помощью козловых кранов и мостовых перегружателей с грузоподъемностью и пролетом, изменяющимися в широком диапазоне. С развитием контейнерных перевозок все большее применение находят козловые краны, имеющие грузоподъемность от 20 до 40 т и обеспечивающие многоярусное складирование контейнеров. Если требуется обслужить склад шириной в несколько сотен метров, то может оказаться целесообразным кабельный кран с пролетом 250…500 м.

С вышеперечисленными кранами успешно конкурируют в зоне относительно небольших грузопотоков стреловые поворотные краны: железнодорожные, автомобильные, гусеничные, башенные и др. При переработке массовых грузов в портах применяют портальные краны с разными грузозахватными устройствами. Для захвата грузов при выполнении погрузочно-разгрузочных операций ис­пользуются грузозахватные устройства как универсальные, так и специализированные.

Высокая производительность крана и безопасная работа на нем могут быть обеспечены при его устойчивом положении, исключающем возможность опроки­дывания. Правилами по кранам и соответствующими руководящими документами установлен порядок расчета устойчивости для разных условий нагружения и по­рядок ее экспериментальной проверки.

1. Назовите головные организации в области проектирования и безопасной экс­плуатации ГПМ.

2. Как принято классифицировать краны мостового типа?

3. Какие режимы работы установлены для кранов в целом и для механизмов в це­лом

4. Как устроен и работает нормально-замкнутый электромагнитный тормоз?

5. Как подобрать канат для механизма подъема крана при сдвоенном полиспасте?

6. Расскажите об устройстве двухбалочного мостового крана.

7. Чем отличается козловой кран от мостового перегружателя?

8. Как принято классифицировать стеллажные краны-штабелеры?

9. Расскажите о способах токоподвода к козловым кранам.

10. Как работает опорно-поворотное устройство стрелового крана?

11. Зачем на портальном кране устанавливается подвижный противовес?

12. Какие нагрузки учитываются при расчете грузовой устойчивости крана?

Коэффициент уплотнения щебенки — что это такое?

При выборе щебня важно учитывать такой показатель, как коэффициент уплотнения. Данный критерий показывает, насколько можно уменьшить объем материала, сохранив при этом такую же массу за счет трамбовки либо естественной усадки. Этот показатель используют, чтобы определить количество заполнителя, как при покупке, так и непосредственно в процессе строительства.

Ввиду того, что после трамбовки насыпной вес щебня какой-либо фракции увеличится, необходимо сразу учесть запас материала. А чтобы не купить лишнего, необходим поправочный коэффициент.

Коэффициент уплотнения (Ку) – это очень важный показатель, который необходим не только для правильного составления заказа материалов, но и для того, чтобы предусмотреть дальнейшую усадку гравийного слоя после его нагрузки строительными конструкциями. Более того, зная коэффициент уплотнения, можно прогнозировать устойчивость самих строительных объектов. Ввиду того, что коэффициент трамбовки – это, по сути, степень уменьшения объема, то он может меняться в зависимости от 4-х факторов:

  1. Способа и параметров загрузки (к примеру, с какой высоты выполняют засыпку).
  2. Особенностей транспорта, посредством которого материал доставляется на объект, и расстояния до стройплощадки – ведь даже неподвижная масса в результате проседания под собственным весом постепенно уплотняется.
  3. Фракции щебня и содержания зерен меньшей крупности, чем нижняя граница конкретного класса щебня.
  4. Лещадности – игольчатые камни дают меньшую усадку, чем кубовидные.

Следует помнить, что прочность бетонных конструкций, фундаментов зданий и автомобильных дорог напрямую зависит от точности определения степени уплотнения. Однако также не стоит забывать о том, что трамбовка на площадке зачастую выполняется только по верхнему слою, а в этом случае расчетный коэффициент не всегда соответствует фактической усадке основания. Особенно часто это происходит, когда строительством занимаются не профессионалы, а любители. В соответствии с требованиями технологии, каждый слой засыпки необходимо укатывать и проверять отдельно.

Еще один параметр, который обязательно следует учитывать, – это то, что степень трамбовки рассчитывается для массы, которая сжимается без бокового расширения, то есть ограничена стенками, что не дает ей расползаться. На площадке такие условия для засыпки любой фракции щебня создаются не всегда, поэтому небольшая погрешность сохраняется. Этот факт следует учитывать, прежде всего, при расчете осадки крупных конструкций.

Читайте так же:
Никуда никогда поезда откоса

Уплотнение при транспортировке

Следует отметить, что найти какое-то стандартное значение сжимаемости на самом деле непросто, так как слишком много факторов оказывают на него влияние. (Все они перечислены выше). Коэффициент уплотнения щебня поставщик может указывать в сопроводительной документации, хотя ГОСТ 8267-93 и не требует этого напрямую. Однако при транспортировке гравия, в особенности его больших партий, зачастую выявляют значительную разницу объемов при загрузке и на строительном объекте, куда он был доставлен. Поэтому поправочный коэффициент, который учитывает уплотнение щебня, обязательно вносится в договор и контролируется в пункте приема. Единственное упоминание в действующем ГОСТ: коэффициент уплотнения, независимо от фракции, не должен быть выше 1,1. Поставщики, безусловно, знают об этом, и, дабы избежать возвратов, стараются сделать небольшой запас. К измерениям часто прибегают во время приемки, когда щебень доставляют на стройплощадку, так как заказывают его не тоннами, а кубометрами. Для этого кузов грузовика с находящимся в нем щебнем, нужно обмерить изнутри рулеткой, после чего рассчитать объем доставленного гравия, а потом умножить его на коэффициент 1,1. Такой расчет позволит приблизительно определить, сколько кубов было засыпано в кузов грузовика до отправки. Если полученная с учетом уплотнения цифра будет меньше той, что указана в сопроводительных документах, значит, кузов автомобиля был недогружен. Равна или больше указанной в документах – можно смело разгружать щебень.

Уплотнение на площадке

Следует обратить внимание, что приведенная выше цифра – 1,1 – учитывается только при транспортировке. На стройплощадке, где трамбовка щебня выполняется искусственно, с применением виброплиты или катка, данный коэффициент может возрасти до 1,52. При этом исполнителям необходимо точно знать степень усадки гравийной засыпки. Обычно этот параметр значится в проектной документации. Однако если в точном значении нет необходимости, пользуются усредненными показателями, которые указаны в СНиП 3.06.03-85:

Щебень фракции 40-70, как правило, имеет уплотнение 1,25-1,3 (если его марка не ниже М800). До М600 – от 1,3 до 1,5. Для мелких и средних классов 5-20 и 20-40 мм данные показатели не установлены, так как зачастую они используются только при расклинцовке верхнего несущего слоя из зерен 40-70.

Лабораторные исследования

Коэффициент уплотнения принято рассчитывать на основании данных лабораторных испытаний, в ходе которых массу щебня подвергают трамбовке и проверке на различных приспособлениях. Здесь существует несколько методов: замещение объемов (ГОСТ 28514-90); стандартное послойное уплотнение щебня (ГОСТ 22733-2002); экспресс-методы с использованием одного из трех типов плотномеров: статического, водобаллонного либо динамического.

Результаты получают либо сразу же, либо по истечении 1-4 дней, в зависимости от того, какой способ для исследования выбран. Стоимость одной пробы стандартного испытания составляет 2500 рублей. Всего необходимо провести не меньше пяти таких проб. Если данные нужны срочно, например, в течение дня, используют экспресс-методы по итогам отбора минимум 10 точек. Стоимость каждой точки составляет 850 рублей. Кроме того, придется оплатить выезд лаборанта на место – еще около 3 тысяч рублей. Однако без точных данных на строительстве крупных объектов не обойтись. Кроме того, солидной строительной организации необходимо наличие официальных документов, которые подтверждают соблюдение подрядчиком требований проекта.

Можно ли узнать степень трамбовки самостоятельно?

Да, коэффициент можно определить как в полевых условиях, так и для нужд частного строительства. Для этого необходимо сначала узнать насыпную плотность по каждому размеру: 5-20, 20-40, 40-70. Она напрямую зависит от минералогического состава материала, но при этом незначительно. Гораздо большее влияние на объемный вес имеют фракции щебня. Для расчета можно пользоваться усредненными данными:

Более точные данные плотности для конкретной фракции щебня можно определить лабораторным путем либо путем взвешивания известного объема строительного щебня с последующим несложным расчетом:

Насыпной вес = масса / объем.

После этого смесь укатывают до того состояния, в котором она будет использоваться на площадке, и измеряют рулеткой. А затем вновь производят расчет формуле, приведенной выше, получая в итоге 2 разных плотности – до и после трамбовки. Поделив обе цифры, получаем коэффициент уплотнения для конкретного материала. При одинаковом весе проб можно просто найти отношение двух объемов – результат будет аналогичным. Следует обратить внимание на то, что если показатель после трамбовки разделить на первоначальную плотность, то полученное в ответе число будет больше единицы – по сути, это коэффициент запаса материала на уплотнение. В строительстве им пользуются в том случае, если известны конечные параметры гравийной подушки и для заказа необходимо определить количество щебня выбранной фракции. При обратном вычислении получается значение меньше единицы. Однако эти цифры равнозначны и при расчетах важно понимать, какую именно следует брать.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector